Mechanisms of Action of Compounds That Enhance Storage Lipid Accumulation in Daphnia magna
نویسندگان
چکیده
Accumulation of storage lipids in the crustacean Daphnia magna can be altered by a number of exogenous and endogenous compounds, like 20-hydroxyecdysone (natural ligand of the ecdysone receptor, EcR), methyl farnesoate, pyrirproxyfen (agonists of the methyl farnesoate receptor, MfR), and tributyltin (agonist of the retinoid X acid receptor, RXR). This effect, analogous to the obesogenic disruption in mammals, alters Daphnia's growth and reproductive investment. Here we propose that storage lipid accumulation in droplets is regulated in Daphnia by the interaction between the nuclear receptor heterodimer EcR:RXR and MfR. The model was tested by determining changes in storage lipid accumulation and on gene transcription in animals exposed to different effectors of RXR, EcR, and MfR signaling pathways, either individually or in combination. RXR, EcR, and MfR agonists increased storage lipid accumulation, whereas fenarimol and testosterone (reported inhibitors of ecdysteroid synthesis and an EcR antagonist, respectively) decreased it. Joint effects of mixtures with fenarimol, testosterone, and ecdysone were antagonistic, mixtures of juvenoids showed additive effects following a concentration addition model, and combinations of tributyltin with juvenoids resulted in greater than additive effects. Co-exposures of ecdysone with juvenoids resulted in deregulation of ecdysone- and farnesoid-regulated genes, accordingly with the observed changes in lipid accumulation These results indicate the requirement of ecdysone binding to the EcR:RXR:MfR complex to regulate lipid storage and that an excess of ecdysone disrupts the whole process, probably by triggering negative feedback mechanisms.
منابع مشابه
Evaluation of Baffle Fixes Film up Flow Sludge Blanket Filtration (BFUSBF) System in Treatment of Wastewaters from Phenol and 2,4-Dinitrophenol Using Daphnia Magna Bioassay
Background: Phenol and nitrophenol are common compounds found in different types of industrial wastewater known as serious threats to human health and natural environment. In this study, Daphnia magna was used to evaluate the effectiveness of "baffle fixes film up flow sludge blanket filtration" (BFUSBF) system in elimination of phenolic compounds from water. Methods: D. magna cult...
متن کاملShort communication-Survey of Methyl Tertiary Butyl Ether (MTBE) toxicity using bioassay on Daphnia magna
متن کامل
Hazard assessment for a pharmaceutical mixture detected in the upper Tennessee River using Daphnia magna
Widespread use of pharmaceuticals has resulted in mixture concentrations ranging from mg/L in effluent to µg/L concentrations in surface water. In a 2008 study, 13 pharmaceuticals, ranging in amounts from 0.0028 to 0.1757 µg/l, were identified in the Tennessee River, USA and its tributaries. In order to address the need for risk assessment of environmentally relevant pharmaceutical mixtures, <e...
متن کاملDaphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity.
Toxicogenomics has provided innovative approaches to chemical screening, risk assessment, and predictive toxicology. If applied to ecotoxicology, genomics tools could greatly enhance the ability to understand the modes of toxicity in environmentally relevant organisms. Daphnia magna, a small aquatic crustacean, is considered a "keystone" species in ecological food webs and is an indicator speci...
متن کاملToxicity of nanoZnO in Daphnia magna fed with ZnO containing Chlorella vulgaris and Scenedesmus dimorphus algae
Nano ZnO is currently used in the rubber, electronics, electrical appliances, enamel, cosmeticsand medical industry. Whereas most studies have used the ecological toxicity of nanoparticles, the toxic effects of nanoparticles in diet is not extensively explored. Because the algaeare at the base of the food chain, any change in their density, biomass and population, wouldaffect the food chain in ...
متن کامل